
RANDOMIZATION IN APPROXIMATION AND

ONLINE ALGORITHMS

Manos Thanos

Randomized Algorithms

NTUA

1

RANDOMIZED ROUNDING

 Linear Programming problems are problems for the
optimization of a linear objective function, subject to linear
equality and linear inequality constraints.

 If all the unknown variables are required to be integers,
then the problem is called an Integer Linear
Programming problem.

 Linear Programming has been proved to be in P by Leonid
Khachiyan in 1979

 Integer Linear Programming is a NP-hard problem. There
is a reduction from 3-SAT to ILP. 2

RANDOMIZED ROUNDING

 For problems in NP we don’t expect to design exact

algorithms with “good” running time

 We design approximation algorithms for these

problems, e.g. algorithms that find a nearly optimal

solution

 We say that an algorithm is k-approximation when the

cost of the solution it finds, is at most k times the cost of

the optimal solution for a minimization problem.

3

RANDOMIZED ROUNDING

The technique of randomized rounding

 Given an Integer Linear program, we compute its

relaxation, e.g. the same linear program without the

restriction for the variables to be integers.

 We solve the relaxation linear program to get an optimal

solution OPTf. In this solution the decision variables may

not be integers.

 We use a randomize process to round the fractional

values of the decision variables into integers. Within the

process we have to achieve a “good” approximation factor. 4

RANDOMIZED ROUNDING (SET COVER)

 SET COVER: Given a universe X of m elements ej, a

collection of subsets of U, S={s1,…,sn} and a cost

function find a minimum cost subcollection of S

that covers all elements of X

 Linear Program:

5

:c S Q

 

1

:

minimize

subject to: 1 1, 2,...

 0,1 1, 2,...

j i

m

i i

i

i

i e S

i

c x

x j n

x i m





  

  





RANDOMIZED ROUNDING (SET COVER)

 A natural idea for rounding an optimal fractional solution

is to view fractions as probabilities, flip coins with

these biases and round accordingly. Repeating this

process O(logn) times and picking a set if it is chosen in

any of the iterations, we get a set cover with high

probability having an expected cost at most O(logn) times

the cost of the optimal solution.

6

Theorem: The above algorithm produces a set cover that

covers all the elements and it has a cost at most

O(logn)*OPT with probability greater or equal than 1/2

RANDOMIZED ROUNDING (SET COVER)

Proof:

Let x be an optimal solution to the linear program. For

each set S pick S with probability xs. Let C be the collection

of sets picked. The expected cost of C is:

Next we compute the probability that an element e is

covered by C. If e occurs in k sets of S that have

probabilities to be picked x1,…,xk, then since e is

fractionally covered, x1+x2+…+xk≥1. The probability that e

is covered, is minimized when x1=x2=…=xk=1/k. Thus,

7

[()] Pr[] () () s f

s S s S

E c C s is picked c s x c s OPT
 

    

1 1
Pr[cov] 1 1 1

k

e is ered by C
k e

 
     

 

RANDOMIZED ROUNDING (SET COVER)

In our algorithm we independently choose dlogn “set

covers” and output their union C’. We choose d to be a

constant such that:

Now,

Summing over all elements, we get:

8

log
1 1

4

d n

e n

 
 

 

log
1 1

Pr[cov ']
4

d n

e is not ered by C
e n

 
  
 

1 1
Pr[' cov]

4 4
 (1)we haven t a valid set er n

n
 

RANDOMIZED ROUNDING (SET COVER)

Clearly

Applying Markov’s Inequality we get:

As a result of (1) and (2) we have that algorithm produces a

set cover that covers all the elements and it has a cost at

most 4dlogn*OPT with probability greater or equal than

1/2

□

9

[(')] logfE c C OPT d n 

1
Pr[(') 4 log]

4
 (2)fc C OPT d n  

RANDOMIZED ROUNDING (MAX-SAT)

 MAX-SAT: Given a conjunctive normal form formula f

on Boolean variables x1,…xn, and non-negative weights,

wc, for each clause c of f, find a truth assignment to the

Boolean variables that maximizes the total weight of

satisfied clauses. Let size(c) denote the number of

literals in c. Let random variable W denote the total weight

of satisfied clauses and Wc denote the weight contributed

by clause c to W.

 Linear Program:

10

 

: :

maximize

subject to: (1)

 y , 0,1 ,

c c

c c

c C

i i c

i S i S

i c

w z

y y z c C

z i c

 



    

  



 

RANDOMIZED ROUNDING (MAX-SAT)

 The algorithm we will use is straightforward. We solve the

relaxation of the linear program to get a fractional solution

(y*,z*). Independently we set xi to True with probability

yi*. Finally we output the resulting truth assignment.

11

Theorem: The above algorithm produces a solution

with expected profit more or equal than (1-1/e)*OPT

JOHNSON’S ALGORITHM FOR MAX-SAT

 The algorithm is the following:

Set each Boolean variable to be True independently with

probability 1/2 and output the resulting truth assignment.

Proof:

If the size of a clause is k, then it is not satisfied if all its

literals are set to False. As a result

For a clause c with , . By linearity of

expectation:

□
12

Theorem: The above algorithm produces a solution

with expected profit equal or greater than 1/2*OPT

[] (1 2)k

c cE W w 

1k 
1

[]
2

c cE W w

1 1
[] []

2 2
c c

c C c C

E W E W w OPT
 

   

DERANDOMIZATION VIA THE METHOD OF

CONDITIONAL EXPECTATION

 Johnson’s algorithm can be derandomized using the
method of conditional probabilities

 We will use the self-reducibility tree T for formula f.
Each internal node at level i corresponds to a setting for
Boolean variables x1,…,xi, and each leaf represents a
complete truth assignment to the n variables.

 We can compute the conditional expectation of any
node in T in polynomial time. Consider a node at level i.
Let φ be the Boolean formula, on variables xi+1, …, xn,
obtained for this node via self-reducibility. Clearly the
expected weight of satisfied clauses of φ can be computed in
polynomial time. Adding to this the weight of clauses of f
already satisfied gives the answer 13

DERANDOMIZATION VIA THE METHOD OF

CONDITIONAL EXPECTATION

 We can compute in polynomial time, a path from the

root to a leaf of T such that the conditional expectation

of each node on this path is equal or greater than

E[W]. Because of the fact that xi+1 is equally likely to be set

to True or False, the conditional expectation of a node is

the average of the conditional expectation of its children,

i.e.,

As a result of this fact, the child with the larger conditional

expectation has at least the same value of its father’s

conditional expectation.

This path gives an assignment with total weight ½*OPT
14

1 1 1

1 1

1
[| ,...,] [| ,..., ,]

2

1
[| ,..., ,]

2

i i i

i i

E W x True x True E W x True x True x True

E W x True x True x False





      

  



A 3/4-FACTOR ALGORITHM FOR MAX-SAT

 We will combine the previous two algorithms as follows: We

flip an unbiased coin and if the result is 1 then we run the

first algorithm, else we run the second algorithm.

Proof:

Let size(c)=k. We have proved that

15

Theorem: The above algorithm produces a solution

with expected profit equal or greater than 3/4*OPT

*

*

[| 0] (1 2) (1 2)

1
[| 1] 1 1

 (1)

 (2)

k k

c c c c

k

c c c

E W coin w w z

E W coin w z
k

     

  
        

A 3/4-FACTOR ALGORITHM FOR MAX-SAT

Combining (1) and (2) we get:

For k=1 or k=2 we get from (3) that

For

16

*

1 1
[] [| 0] [| 1]

2 2

1 1
1 1 (1 2)

2
 (3)

c c c

k

k

c c

E W E W coin E W coin

w z
k



    

   
            

*3
[]

4
c c cE W w z

3k 

* *7 (1 1/) 3
[]

16 2 4
c c c c c

e
E W w z w z

 
   
 

A 3/4-FACTOR ALGORITHM FOR MAX-SAT

By linearity of expectation:

which completes the proof. □

 We can change the above ¾-factor algorithm to make it

deterministic:

Use the derandomized 1/2 –factor algorithm to solve the problem

Use the derandomized (1-1/e) –factor algorithm to solve the

problem

Output the better of the two assignments

17

*3 3
[] []

4 4
c c c

c C c C

E W E W w z OPT
 

   

AN IMPROVED ALGORITHM FOR MAX-2SAT

 A quadratic program is a problem of optimizing a
quadratic function of integer valued variables, subject to
quadratic constraints on these variables. If each
monomial in the objective function , as well as in each of the
constraints, is of degree 0 or 2, then we will say that this is
a strict quadratic program.

 A strict quadratic program over n variables defines a
vector program over n vector variables in . Every degree 2
term corresponds to an inner product

 Vector programs are equivalent to semi-definite
programs

 For all ε>0 semi-definite programs can be solved within
an additive error of ε, in time polynomial in n and log(1/ε).

18

nR

AN IMPROVED ALGORITHM FOR MAX-2SAT

 We can construct a strict quadratic program for MAX-2SAT

Corresponding to each Boolean variable xi, we introduce

variable yi which is constrained to be +1 or -1. In addition,

we introduce another variable y0 which is also constrained

to be +1 or -1. Variable xi will be true if yi=y0 and false

otherwise. Now:

19

01
()

2

i
i

y y
v x


   01

2

i
i

y y
v x




    00

00

11
() 1 1

2 2

1 11

4 4 4

ji
i j i j

j i ji

y yy y
v x x v x v x

y y y yy y


     

 
  

AN IMPROVED ALGORITHM FOR MAX-2SAT

 Strict Quadratic Program:

 Vector Relaxation Program:

20

 
0

2

maximize (1 y y) (1 y y)

subject to: y =1 0

 y 0

ij i j ij i j

i j n

i

i

a b

i n

Z i n

  

  

  

   



 
0

1

maximize (1) (1)

subject to: u u =1 0

 u 0

ij i j ij i j

i j n

i i

n

i

a u u b u u

i n

R i n

  



  

  

   



AN IMPROVED ALGORITHM FOR MAX-2SAT

 The algorithm is the following:

We solve the vector program. Let a0,…, an be an optimal

solution. We pick a vector r uniformly distributed on the

unit sphere in n+1 dimensions and we set yi=1 iff

This gives a truth assignment for the Boolean variables.

21

0ir a 

Theorem: The above algorithm produces a solution

with expected profit equal or greater than a*OPT

where a>0,87856

AN IMPROVED ALGORITHM FOR MAX-2SAT

Proof:

Let W be the random variable denoting the weight of the

truth assignment produced by the algorithm. We will prove

that E[W]≥a*OPT.

We can see that:

Let θij denote the angle between ai and aj .Then:

22

0

[] 2 Pr[] Pr[]ij i j ij i j

i j n

E W a y y b y y
  

   

Pr[]
ij

i jy y



  Pr[] 1

ij

i jy y



  

0

[] 2 1 (1)
ij ij

ij ij

i j n

E W a b
 

   

 
   

 


AN IMPROVED ALGORITHM FOR MAX-2SAT

Now, if we choose

We have that:

(1) becomes from (2) and (3):

23

0

2
min

1 cos
a

 



  




1 cos

2
a (2)

ij ij 



 
  

 

1 cos
1

2
a (3)

ij ij 



 
   

 

0 0

[] 2 1 (1 cos) (1 cos)a
ij ij

ij ij ij ij ij ij

i j n i j n

E W a b a b
 

 
      

 
       

 
 

AN IMPROVED ALGORITHM FOR MAX-2SAT

Because of the fact that vectors are on the unit sphere we

have that uiuj=cosθij . The minimization function was

And the angles θij are the angles between the vectors that

gives the optimal solution. Thus:

Using elementary calculus we can prove that

The above algorithm is 0.87856-approximation

□
24

 
0

minimize (1) (1)ij i j ij i j

i j n

a u u b u u
  

  

0

[] (1 cos) (1 cos)a aij ij ij ij

i j n

E W a b OPT 
  

     

0

2
min 0.87856

1 cos
a a

 



  
  



ONLINE ALGORITHMS

 Online algorithms receive and process the input in

partial amounts. In a typical setting, an online algorithm

receives a sequence of requests for service. It must

service each request before it services the next one. In

servicing each request the algorithm has a choice of several

alternatives, each with an associated cost. The choice

influences the future requests.

 In order to evaluate an online algorithm we compare its

total cost on a sequence of requests to the total cost of

an offline algorithm that services the same sequence of

requests. The worst case ratio over all possible

request sequences is the competitive ratio of an online

algorithm and is the natural measure of the quality of the

algorithm
25

ONLINE PAGING PROBLEM

 PAGING PROBLEM: Consider the following two level

virtual memory system. Each level can store a number of

fixed-size memory units, called pages. The first level, called

the slow memory can store a fixed set P={p1,…,pN} of N

pages. The second level, called the fast memory, can

store any k-subset of P. Given a request for a page pi the

system must bring pi to the fast memory. If pi is

already to the fast memory, then no cost incurs; otherwise

a unit cost incurs. In order to move pi to the fast memory

another page has to be evicted. The problem is to

minimize the total cost by making a wise choice when

evicting a page. It is obvious that a page which will be

requested in the near future shouldn’t be evicted but the

future is unknown as the problem is online.
26

DETERMINISTIC ALGORITHMS FOR PAGING

 Least Recently Used (LRU): evict the item in the cache
whose most recent request occurred furthest in the past

 Fist-in, First-out (FIFO): evict the item that has been in
the cash for the longest period

 Last-in, First-out (LIFO): evict the item that has been
moved to the cash most recently

 Least Frequently Used (LFU): evict the item in the cash
that has been requested least often

 LRU and FIFO are k-competitive. LIFO and LFU don’t
achieve a bounded competitiveness coefficient. 27

DETERMINISTIC ALGORITHMS FOR PAGING

 Can we overcome the negative result of the above theorem

using randomization?

28

Theorem: There isn’t a deterministic online

algorithm for the online paging problem that

achieves a competitiveness coefficient better than k

where k is the number of pages that could be stored

in the cash

ADVERSARY MODELS

 We can view the offline algorithm servicing the request
sequence as an adversary who is not only managing the
cache, but it also generating the request sequence. The
adversary’s goal is to increase the cost of the given
online algorithm, while keeping it down for the offline
algorithm.

 Oblivious adversary: must construct the request sequence in
advance and pays optimally

 Adaptive online adversary: serves the current request online
and then chooses the next request based on the online
algorithm’s actions so far

 Adaptive offline adversary: chooses the next request based on
the online algorithm’s actions thus far, but pays the optimal
offline cost to service the resulting request sequence 29

A RANDOMIZED ALGORITHM FOR PAGING

 Algorithm MARKER: The algorithm proceeds in a series

of rounds. Each of the k cache locations has a marker

bit associated with it. At the beginning of every round,

all k marker bits are reset to zero. As memory requests

come in, the algorithm processes them as follows. If the

item requested is already in one of the k cache locations,

the marker bit of that location is set to one. If the

request is a miss, the item is brought into the cache

and the item that is evicted to make room for it is chosen

as follows: choose an unmarked cache location

uniformly at random, evict the item in it and set its

marker bit to one. After all the locations have been thus

marked, the round is deemed over on the next request to an

item not in the cache.
30

A RANDOMIZED ALGORITHM FOR PAGING

Proof:

We assume that algorithm MARK and algorithm OPT start
with the same set of items in their caches; otherwise it is
possible to attribute the difference to an additive constant.

For each phase i we call the pages in the cache immediately
prior to the start of the phase old. We call the rest of the
pages new.

Consider the i-th phase of the algorithm. Let mi be the
number of new pages requested in this phase. It is obvious
that the worst scenario for MARK is that all new pages
requests precede the old pages requests.

31

Theorem: Marker algorithm is 2Hk-competitive

against an oblivious adversary, where Hk is the k-th

harmonic number

A RANDOMIZED ALGORITHM FOR PAGING

Ordered in this way, the first mi requests incur mi page

faults. We now investigate the page faults resulted for the

first k-mi requests to old pages.

The j-th old page requested in this phase is in the cache

with probability:

A page fault will occur only if the page is not in the cash,

thus with probability:

32

(1)

(1)

ik m j

k j

  

 

(1)

im

k j 

A RANDOMIZED ALGORITHM FOR PAGING

Hence, the expected number of faults during the i-th phase

is:

During the i-th and (i-1)-th phase, at least k+mi pages are

requested. As a result, OPT has made at least mi page

faults. At the first phase OPT made at least m1 page faults.

Thus the total number of page faults of OPT is:

Thus the competitive ratio is at least:

□

1

() (1)
(1)

i

i i

k m

i
i i i k m i k m i k

j

m
m m m H H m H H m H

k j





       
 



1

2
i

i

m

2
1

2

i k

i
k

i

i

m H

H

m




 33

LOWER BOUND FOR RANDOMIZED PAGING

ALGORITHMS

Proof:

We will use Yao’s minimal principle: The expected running

time of the optimal deterministic algorithm for an

arbitrarily chosen distribution ρ is a lower bound on the

expected running time of the optimal randomized

algorithm for problem P

It suffices to show that for an arbitrarily chosen

distribution ρ any deterministic algorithm can’t achieve a

better competitiveness coefficient than Hk. Then Hk will be

a lower bound for every randomized algorithm.
34

Theorem: Any randomized algorithm for online

paging can’t achieve a competitiveness coefficient

better than Hk against an oblivious adversary

LOWER BOUND FOR RANDOMIZED PAGING

ALGORITHMS

We will use only k+1 different pages I={p1,…pk+1}. The
distribution on requests will be the following: The request
ri is chosen uniformly at random from the pages I-{ri-1}.

We will divide the requests into rounds. A round ends when
all different pages in I are requested. The expected length
of a round is kHk as it is equivalent to a random walk on a
complete graph with k+1 vertices.

The offline algorithm makes a page fault in every round.

The expected page faults of every deterministic algorithm
is Hk.

As a result Hk is a lower bound on every deterministic
algorithm and this yields the result

□
35

ONLINE K-SERVER PROBLEM

 K-SERVER PROBLEM: Let k>1 be an integer and let

M=(M,d) be a metric space where M is a set of points with

|M|>k and d is a metric over M. An algorithm controls k

mobile servers, which are located on points of M. The

algorithm is presented with a sequence σ=r1,r2,…,rn of

requests where a request ri is a point in the space. We say

that a request ri is served if one of the k servers lies on

point ri. By moving servers, the algorithm, must serve all

the requests sequentially. Our goal is to minimize the total

cost occurred which is the total distance moved by all

servers until all requests are served.

36

ONLINE K-SERVER PROBLEM

 k-server is a generalization of the online paging problem.

 The greedy algorithm doesn’t achieve a bounded
competitiveness coefficient

 k-server conjecture: Any metric space allows for a
deterministic k-competitive, k-server algorithm. (k has
been proved to be a lower bound on the competitiveness
coefficient of any deterministic algorithm)

 We have found a deterministic (2k-1)-competitive algorithm
for all metric spaces.

 We have found deterministic k-competitive algorithms
when the metric space is a line or a tree.

37

ONLINE K-SERVER PROBLEM

 We know of relatively few cases where randomization

against an oblivious adversary beats the lower bound of k

for deterministic algorithms.

 It is an open question if there is a randomized algorithm

that can achieve a competitiveness coefficient better than

Hk against an oblivious adversary.

 We have shown that the lower bound on every online

algorithm against an adaptive online adversary is k.

38

ONLINE K-SERVER PROBLEM

 Harmonic Algorithm: Let di be the distance between the i-

th server and the requested point. The algorithm chooses

independently of the past to the j-th server to service the

request with probability:

 We have found metrics that the Harmonic algorithm can’t

achieve a competitiveness coefficient better than k(k+1)/2

 We have shown that is an upper bound on

Harmonic’s competitiveness coefficient 39

1

1

1
i

k

i

d

d

5 2

4

kk

Thank You

40

